Zipperposition, a new platform for Deduction Modulo

Simon Cruanes

Veridis, Inria Nancy
https://cedeela.fr/~simon/

7th of july, 2017

Simon Cruanes 7th of july, 2017 1/17

https://cedeela.fr/~simon/

@ Introduction to Zipperposition

Simon Cruanes 7th of july, 2017 1/17

Quick Tour of Features

val set : type —> type.

val i : type.
val a : i.
val b : i.

val[infix "€"] mem : pi a. a —> set a —> prop.

val[infix "U"] union : pi a. set a —> set a —> set a.

valfinfix "C"] subeq : pi a. set a —> set a —> prop.

val[prefix "P"] power : pi a. set a —> set (set a).

rewrite forall a (x:a) A B. mem x (union A B) <=> (mem x A || mem x B).

rewrite forall a A B. subeq A B <=> (forall (x:a). mem x A => mem x B).

rewrite forall a (x:set a) A. mem x (power A) <=> subeq x A.

goal forall (A:set i) B. subeq (power A) (power (union A B)).

Simon Cruanes 7th of july, 2017 2 /17

$ zipperposition ——dot foo.dot set_fancy.dot
$ dot —Txlib foo.dot

Simon Cruanes 7th of july, 2017 3/17

Solution

$ zipperposition ——dot foo.dot set_fancy.dot
$ dot —Txlib foo.dot

S sup- sup-

| ~(sk_x (sk_A U sk_B) (sk_x (P (sk_A U sk_B)) (P sk A))) € sk A/8 | | (sk_x (sk_A U sk_B) (sk_x (P (sk_A U sk_B)) (P sk A))) € sk_A/10 |

frw-clause S-sup 0101 — sk x (sk_A U sk_B) (sk_x (B (sk_A U sk_B)) (B'sk_AN1]}
| _‘((?ﬁ)f\(ﬁk‘l': e S | B (sl‘: (:kuAs b EI)((EI)() f;l;k(skﬁsu CERALE | {;?gg);uig.v -X0 € (sk_x (P (sk_A U sk_B)) (B sk_A))7
rw_clause w_clause clause
| S(sk_x (P (sk_A U sk_B)) (P sk A)) € (sk A U sk B)3 | | (sk_x (P (sk_A U sk B)) (B sk_A)) C sk A/6 |

| ~(sk_x (P (sk_A U sk_B)) (P sk A)) € (P (sk_A U sk_B))/1 | | (sk_x (P (sk_A U sk_B)) (P sk_A)) € (P sk A)2 |

clause

| ~ (Y A/a9:(set i) B/51:(set i). (P A/49) € (P (A/49 U B/51)))) |

eg_goal

mon Cruanes 7th of july, 2017

Input Language

Custom language to support custom features.

@ rank-1 polymorphic types
o toplevel statements (declare everything)
> assertions
> rewrite rules
» definitions
> datatypes
» goal (negated assertion)
» lemmas (introduces a cut)
@ ML-like syntax for terms
> curried terms
» if/then/else, match
» usual operators

@ custom attributes (AC, infix-notation, ...)

Simon Cruanes 7th of july, 2017 4 /17

Zipperposition: the prover

written in OCaml (~) from scratch

37k loc right now

BSD license, on github
https://github.com/c-cube/zipperposition

decently modular, decent performances
paper about the internals: https://hal.inria.fr/hal-01101057/

Simon Cruanes 7th of july, 2017 5 /17

https://github.com/c-cube/zipperposition
https://hal.inria.fr/hal-01101057/

Global Framework : Superposition

Zipperposition is centered around Superposition.

the calculus:
@ clausal (works on disjunctions of literals)
o refutational (goal: deduce 1)

@ equational (tailored for reasoning with equality)

Simon Cruanes 7th of july, 2017 6 /17

Global Framework : Superposition

Zipperposition is centered around Superposition.
the calculus:

@ clausal (works on disjunctions of literals)

o refutational (goal: deduce 1)

@ equational (tailored for reasoning with equality)

Say we have only two elements a and b, on which p holds. Then prove
Vx.p(x) by refuting 3c.—p(c):

-p(¢) X ~aVx~b
- p(a) Vc~b p(a)
c ~b -p(lc)

- p(b) p(b)
T

(Note the binding of x to ¢ using unification)

Simon Cruanes 7th of july, 2017 6 /17

Example: Group Theory

Left-inverse is also right-inverse:

Simplify_reflect™~gimplify_reflect-

sup+
l(X010] ~ sk_Y1[01}

forall (X0:term). f sk X X0 = f (sk_Y sk Y1) X021

S sup+
{X0[0] - £ sk X X0[1],
X1[0] - sk_Y1[1]}

AT | forall (X0:term) (X1:term). X0 = f (sk_Y X1) (FX1 X0/12 | | forall (X0:term). X0 = £ sk Y1 (£ sk X X0/11 |

demod demod
demod X311~ Xo[o1} 3111 - xopop \demed

| forall (X0:term) (X1:term). f a X0 = f (sk_Y X1) (fX1 X0)/8 | | forall (X3:term). fa X3 = X3/1 | | forall (X0:term). fa X0 = £ sk Y1 (£ sk X X0)/7 |

< sup+
X001~ sk Y1[11, \s_sup+
X1(0] - sk X(1]}

s sup+ s sup+
X4(1] - X1(0]} {X0[0] — sk_Y X4[1]}

forall (X4:term). f (sk_Y X4) X4 = a/2 | | forall (X0:term) (X1:term) (X2:term). f (X0 X1) X2 = £X0 (FX1 X2)/0 | ¥ X/10:term. (fa X/10) = X/10)

cnf lonf

¥ X/6:term Y/7:term Z/8:term. (£ (£X/6 Y/7) Z/8) = (£X/6 (£ /7 Z/8))) = (¥ X/13:term Y/14:term. (£ Y/14 X/13) = a) = ((£X/13 Y/14) = a))

¥ X/11:term. 3 Y/12:term. (£ Y/12 X/11) = a)
eg_goal

ly, 2017 7/ 17

Simon Cruanes

Some Notable Extensions

Zipperposition also has some extensions:

AC symbols

Linear {Integer, Rational} Arithmetic
Structural Induction (for datatypes)
Higher-Order Logic (WIP!)

— quite easy to plug in new simplification/inference rules

Simon Cruanes 7th of july, 2017 8 /17

Inductive Proof

Commutativity of addition:

Simon Cruanes 7th of july, 2017 9 /17

9 Deduction Modulo

Simon Cruanes 7th of july, 2017 9 /17

Deduction Modulo (cheatsheet)

Recall
@ rewrite rules for terms
rewrite rules for literals (signed atoms)
also perform narrowing (unification replacing matching)

o
o
@ also do narrowing inside rules’ LHS (contextual narrowing)
o

great for some theories!

— Let's look at some examples.

Simon Cruanes 7th of july, 2017 10 / 17

Favorite Example : Set Theory

val set : type —> type.

val[infix "€"] mem : pi a. a —> set a —> prop.
val[infix "U"] union : pi a. set a —> set a —> set a.
val[infix "C"] subeq : pi a. set a —> set a —> prop.

rewrite forall a s1 s2 x. mem a x (union a sl s2) <=> mem a x sl || mem a x
s2.

rewrite forall a s1 s2. subeq a sl s2 <=> (forall x. mem a x s1 => mem a x
s2).

rewrite forall a (s1 s2 : set a). sl = s2 <=> (subeq sl s2 && subeq s2 sl).

goal
forall a (S1 S2 S3 S4 S5 S6 : set a).
(union S1 (union S2 (union S3 (union S4 (union S5 S6))))) =
(union S6 (union S5 (union S4 (union S3 (union S2 S1))))).

Simon Cruanes 7th of july, 2017 11 / 17

@ solved in 0 steps

@ entirely reduced to €-literals

@ AVATAR does the splitting
— bit-blasting for free!

Lightweight Theories

Example

Classic theory of (extensional) arrays

val array : type —> type —> type.
val update : piab. arrayab —>a —> b —> array a b.
val get : piab.arrayab —>a —> b.

rewrite forall a b (arr:array a b) x1 x2 v.
get (update arr x2 v) x1 = (if x1=x2 then v else get arr x1).

rewrite forall a b (arrl arr2 : array a b).
arrl = arr2 <=> (forall x. get arrl x = get arr2 x).

Simon Cruanes 7th of july, 2017 13 / 17

Lightweight Theories

Example

Classic theory of (extensional) arrays

val array : type —> type —> type.
val update : piab. arrayab —>a —> b —> array a b.
val get : piab.arrayab —>a —> b.

rewrite forall a b (arr:array a b) x1 x2 v.
get (update arr x2 v) x1 = (if x1=x2 then v else get arr x1).

rewrite forall a b (arrl arr2 : array a b).
arrl = arr2 <=> (forall x. get arrl x = get arr2 x).

goal forall x arr. arr = update arr x (get arr x).

Simon Cruanes 7th of july, 2017 13 / 17

Lightweight Theories

Example

Classic theory of (extensional) arrays

val array : type —> type —> type.
val update : pia b. arrayab —>a —> b —> array a b.
val get : piab.arrayab —>a —> b.

rewrite forall a b (arr:array a b) x1 x2 v.
get (update arr x2 v) x1 = (if x1=x2 then v else get arr x1).

rewrite forall a b (arrl arr2 : array a b).
arrl = arr2 <=> (forall x. get arrl x = get arr2 x).

goal forall x arr. arr = update arr x (get arr x).

goal forall x1 x2 arr. x1 1= x2 && vl |=v2 =>
update (update arr x1 v1) x2 v2 |= update (update arr x2 v1) x1 v2.

Simon Cruanes 7th of july, 2017 13 / 17

B-ware, again

Internship of Pierre-Louis Euvrard, in Montpellier
co-supervised with David Delahaye

experiment with (typed) set theory using Zipperposition
Lemmas: good results

Proof Obligations: WIP

Simon Cruanes 7th of july, 2017 14 / 17

© Rewriting (dis)equations

Simon Cruanes 7th of july, 2017 14 / 17

Custom Notion of Equality

In previous examples, there were rules such as:

rewrite forall a (s1 s2 : set a).
sl = s2 <=> (subset s1 s2 && subset s2 s1).

rewrite forall a b (arrl arr2 : array a b).
arrl = arr2 <=> (forall x. get arrl x = get arr2 x).

Simon Cruanes 7th of july, 2017 15 / 17

Custom Notion of Equality

In previous examples, there were rules such as:

rewrite forall a (s1 s2 : set a).
sl = s2 <=> (subset s1 s2 && subset s2 s1).

rewrite forall a b (arrl arr2 : array a b).
arrl = arr2 <=> (forall x. get arrl x = get arr2 x).

— Custom equality!

@ we only rewrite negative equational literals
@ a~~ b is already maximal information
@ a bisagoal (prove a~ b toremove the literal)

@ should only be useful for LHS-pattern x ~ y of certain types

Simon Cruanes 7th of july, 2017 15 / 17

Where does it lead?

question: s this studied?

Simon Cruanes 7th of july, 2017 16 / 17

Where does it lead?

question: s this studied?

Follow-up: Unification with Constraints
@ used for arithmetic already
@ principle: during unification, delay pairs of certain types
o to unify f(a,b+1) and f(a,1+ b), delay b+1=1+5b
— We add a literal b+ 1 %21+ b to resulting clause
— This literal will be deal with by rewriting/theories

— would be interesting to delay pairs of types that have equational
rewrite rules (e.g. sets, arrays)

Simon Cruanes 7th of july, 2017 16 / 17

Conclusion

Current status
@ usable prover for Superposition modulo
@ no completeness result (except for resolution modulo?)
o full narrowing implemented (and sometimes useful)

@ nice proof output for debugging

— good platform for experimenting with ATP modulo

Simon Cruanes 7th of july, 2017 17 / 17

Conclusion

Current status
@ usable prover for Superposition modulo
@ no completeness result (except for resolution modulo?)
o full narrowing implemented (and sometimes useful)
@ nice proof output for debugging
— good platform for experimenting with ATP modulo

Future work/directions
@ custom induction schemas
o delayed unification for extensional types
e WIP: higher-order (in particular, rewriting/reasoning with patterns)

o direly needed: proof checking

Simon Cruanes 7th of july, 2017 17 / 17

Thanks for your attention!

Simon Cruanes 7th of july, 2017 17 / 17

	Introduction to Zipperposition
	Deduction Modulo
	Rewriting (dis)equations

