
SMBC: Engineering a Fast Solver in OCaml

Simon Cruanes

Veridis, Inria Nancy
https://cedeela.fr/~simon/

28th of March, 2017

Simon Cruanes SMBC 28th of March, 2017 1 / 17

https://cedeela.fr/~simon/

Summary

1 Presentation of SMBC (“Satisfiability Modulo Bounded Checking”)

2 Implementation

3 Profiling for Better Performance

Simon Cruanes SMBC 28th of March, 2017 1 / 17

Example problem

Given:
inductive type declarations
(recursive) function definitions
a goal: an expression with variables in it

→ find assignment of variables satisfying the goal

Example
Ask the solver to find a palindrome list of length 2 (e.g. [1;1]).

let rec length = function
| [] −> 0
| _ :: tail −> succ (length tail)

let rec rev = function
| [] −> []
| x :: tail −> rev tail @ [x]

(∗ magic happens here ∗)
goal (rev l = l && length l = 2)

Simon Cruanes SMBC 28th of March, 2017 2 / 17

Example problem

Given:
inductive type declarations
(recursive) function definitions
a goal: an expression with variables in it

→ find assignment of variables satisfying the goal

Example
Ask the solver to find a palindrome list of length 2 (e.g. [1;1]).

let rec length = function
| [] −> 0
| _ :: tail −> succ (length tail)

let rec rev = function
| [] −> []
| x :: tail −> rev tail @ [x]

(∗ magic happens here ∗)
goal (rev l = l && length l = 2)

Simon Cruanes SMBC 28th of March, 2017 2 / 17

More examples

Example
Ask the solver to find a regex matching "aabb"

type char = A | B
type string = char list
type regex =
| Epsilon (∗ empty ∗)
| Char of char
| Star of regex
| Or of regex ∗ regex (∗ choice ∗)
| Concat of regex ∗ regex (∗ concatenation ∗)

let rec match_re : regex −> string −> bool = ...

goal (match_re r [A;A;B;B])

We get r = (ε|a*)·b*, i.e.
r = Concat (Or (Epsilon, (Star (Char A))), Star (Char B))

Simon Cruanes SMBC 28th of March, 2017 3 / 17

More Examples

Example
Solving a sudoku

type cell = C1 | C2 | ... | C9
type ’a sudoku = ’a list list

let rec is_instance : cell sudoku −> cell option sudoku −> bool = (∗ ... ∗)

let rec is_valid : cell sudoku −> bool = (∗ ... ∗)

let partial_sudoku : cell option sudoku = [[None; Some C1; ...]; ...;]

(∗ find a full sudoku that matches "partial_sudoku" ∗)
goal (is_instance e partial_sudoku && is_valid e)

→ combinatorial explosion, large search space
→ write a SMT solver (satisfiability modulo theory)
→ solves in 14 s (not bad for a general-purpose tool)

Simon Cruanes SMBC 28th of March, 2017 4 / 17

More Examples

Example
Solving a sudoku

type cell = C1 | C2 | ... | C9
type ’a sudoku = ’a list list

let rec is_instance : cell sudoku −> cell option sudoku −> bool = (∗ ... ∗)

let rec is_valid : cell sudoku −> bool = (∗ ... ∗)

let partial_sudoku : cell option sudoku = [[None; Some C1; ...]; ...;]

(∗ find a full sudoku that matches "partial_sudoku" ∗)
goal (is_instance e partial_sudoku && is_valid e)

→ combinatorial explosion, large search space
→ write a SMT solver (satisfiability modulo theory)
→ solves in 14 s (not bad for a general-purpose tool)

Simon Cruanes SMBC 28th of March, 2017 4 / 17

Similar Tools

HBMC : source of inspiration, bit-blasting Haskell → SAT
small check : native code, tries all values up to depth k

lazy small check : same, but uses lazyness to expand
narrowing : similar to LSC, refine meta-variables on demand

CVC4 : handles datatypes and recursive functions by quantifier
instantiation + finite model finding (→ inefficient?)

QuickCheck & co : random generation of inputs. Very bad on tight
constraints.

. . .

Draw inspiration from HBMC / narrowing+SAT.

Simon Cruanes SMBC 28th of March, 2017 5 / 17

The Bigger Picture

make a better solver for problems based on recursive functions
the rest of the talk: implementation
use SMT techniques for not drowning in search space
→ “Satisfiability Modulo Bounded Checking”
relation to Nunchaku (model finder for HO logic):

I SMBC is a backend
I other backends not very good on this fragment

→ useful and widely applicable problem!
paper submitted to CADE

Simon Cruanes SMBC 28th of March, 2017 6 / 17

http://www.cade-26.info/

Summary

1 Presentation of SMBC (“Satisfiability Modulo Bounded Checking”)

2 Implementation

3 Profiling for Better Performance

Simon Cruanes SMBC 28th of March, 2017 6 / 17

Using a SAT-solver Library

Use a SAT solver, here .
→ does the backtracking and exploration.

Modularity
MSat is a library using an OCaml functor.
Bring your own theory!

module type THEORY = sig
type formula
type clause = (formula ∗ bool) list

type result = Ok of clause list | Conflict of clause

val assume : formula −> bool −> result (∗ my code ∗)
end

module Sat(T:THEORY) : sig
val solve : formula list −> bool (∗ library code ∗)

end

Simon Cruanes SMBC 28th of March, 2017 7 / 17

https://github.com/Gbury/mSAT

Internals

one big Solver module (3,500 loc)
more than 20 mutually recursive types at the beginning
(to replace tables by embedding data inside objects)

→ yes, ignoring the rules of SW engineering can be fine
. . . for performance reasons
one can write C in any language, even OCaml!

Simon Cruanes SMBC 28th of March, 2017 8 / 17

A few design Decisions

terms (“expressions”, that is, trees) are DAGs with perfect sharing
→ save memory, constant-time comparison
→ most provers/SMT do it, even in C
interpreter with caching of normal form of a value
→ caching often dramatically improves performance (when it applies)
backtracking: a big stack of “undo” functions
→ low memory footprint, low overhead

Simon Cruanes SMBC 28th of March, 2017 9 / 17

Summary

1 Presentation of SMBC (“Satisfiability Modulo Bounded Checking”)

2 Implementation

3 Profiling for Better Performance

Simon Cruanes SMBC 28th of March, 2017 9 / 17

How to debug Performance

SMBC needs to be very efficient, because it is kind of bruteforce.

Rules of thumb
try to use efficient algorithms everywhere
try to avoid allocating too much
use compiler optimizations (here, ocaml+flambda)
avoid obviously inefficient code, but:
avoid “premature optimization” (as would say D. Knuth)

→ hence the need for profiling

Simon Cruanes SMBC 28th of March, 2017 10 / 17

CPU profiling: “perf”

perf: standard tool on Linux (initially there for the kernel)

% perf record −−call−graph=dwarf ./smbc.native examples/ty_infer.smt2
(result SAT
:model ((val e_2

(lam
(lam
(lam
(app (lam (app (var (s (s (s z)))) (var z) b))
(app (var (s z)) (var z) a) b)))))))

[perf record: Woken up 40 times to write data]
[perf record: Captured and wrote 9.946 MB perf.data (1234 samples)]

% perf report

Simon Cruanes SMBC 28th of March, 2017 11 / 17

CPU profiling: “perf”

perf: standard tool on Linux (initially there for the kernel)

% perf record −−call−graph=dwarf ./smbc.native examples/ty_infer.smt2
(result SAT
:model ((val e_2

(lam
(lam
(lam
(app (lam (app (var (s (s (s z)))) (var z) b))
(app (var (s z)) (var z) a) b)))))))

[perf record: Woken up 40 times to write data]
[perf record: Captured and wrote 9.946 MB perf.data (1234 samples)]

% perf report

Simon Cruanes SMBC 28th of March, 2017 11 / 17

Perf (cont’d)

Simon Cruanes SMBC 28th of March, 2017 12 / 17

Perf and Flamegraphs

With deep recursive calls, perf report isn’t very good.

→ flame graphs (http://www.brendangregg.com/flamegraphs.html)

perf script \
| stackcollapse−perf −−kernel \
| sed ’s/caml//g’ \
| flamegraph > perf.svg

http://www.brendangregg.com/flamegraphs.html

Perf and Flamegraphs

With deep recursive calls, perf report isn’t very good.
→ flame graphs (http://www.brendangregg.com/flamegraphs.html)

perf script \
| stackcollapse−perf −−kernel \
| sed ’s/caml//g’ \
| flamegraph > perf.svg

http://www.brendangregg.com/flamegraphs.html

Memory Profiling

OCaml has a GC, so I need to minimize allocations.
→ use spacetime, a new memory profiler!

https://caml.inria.fr/pub/docs/manual-ocaml/spacetime.html

https://blogs.janestreet.com/a-brief-trip-through-spacetime/

Available as an OCaml compiler switch

% opam sw 4.04.0+spacetime

% make clean all

% OCAML_SPACETIME_INTERVAL=100 ./smbc.native examples/ty_infer.smt2

% prof_spacetime serve spacetime−<PID> −e smbc.native

Simon Cruanes SMBC 28th of March, 2017 14 / 17

https://caml.inria.fr/pub/docs/manual-ocaml/spacetime.html
https://blogs.janestreet.com/a-brief-trip-through-spacetime/

Memory Profiling

OCaml has a GC, so I need to minimize allocations.
→ use spacetime, a new memory profiler!

https://caml.inria.fr/pub/docs/manual-ocaml/spacetime.html

https://blogs.janestreet.com/a-brief-trip-through-spacetime/

Available as an OCaml compiler switch

% opam sw 4.04.0+spacetime

% make clean all

% OCAML_SPACETIME_INTERVAL=100 ./smbc.native examples/ty_infer.smt2

% prof_spacetime serve spacetime−<PID> −e smbc.native

Simon Cruanes SMBC 28th of March, 2017 14 / 17

https://caml.inria.fr/pub/docs/manual-ocaml/spacetime.html
https://blogs.janestreet.com/a-brief-trip-through-spacetime/

Memory Profiling (cont’d)

Horizontal: time
Vertical: space
Colors: track memory allocated from a given program position

Memory Profiling (cont’d)

Can zoom into any region!

Memory Profiling

Found a performance bug this way:

MSat uses a lot of dynamic arrays
mistake in criterion for re-sizing

→ resize at every Vec.push!
almost all allocations came from there;
spacetime made it obvious.

Simon Cruanes SMBC 28th of March, 2017 16 / 17

Conclusion

good algorithms (SAT solver here) trump excellent implementation
. . . but implementation still important!

OCaml can have reasonable performance if used properly
profile before micro-optimizing
tooling for profiling is tremendously useful

perf: can be used with many languages, de-facto standard on
Linux

spacetime: awesome, but limited to OCaml
others: can also profile by manually inserting counters

Simon Cruanes SMBC 28th of March, 2017 17 / 17

	Presentation of SMBC (``Satisfiability Modulo Bounded Checking'')
	Implementation
	Profiling for Better Performance

