SMBC: Engineering a Fast Solver in OCaml

Simon Cruanes

Veridis, Inria Nancy
https://cedeela.fr/“simon/

28th of March, 2017

Simon Cruanes 28th of March, 2017 1/17

https://cedeela.fr/~simon/

@ Presentation of SMBC (“Satisfiability Modulo Bounded Checking’)

Simon Cruanes 28th of March, 2017 1/17

Example problem

Given:
@ inductive type declarations
@ (recursive) function definitions
@ a goal: an expression with variables in it
— find assignment of variables satisfying the goal

Simon Cruanes 28th of March, 2017 2 /17

Example problem

Given:
@ inductive type declarations
@ (recursive) function definitions
@ a goal: an expression with variables in it
— find assignment of variables satisfying the goal

Example

Ask the solver to find a palindrome list of length 2 (e.g. [1;1]).

let rec length = function
I]—->0
| tail —=> succ (length tail)

let rec rev = function

[0 —>1

| x :: tail —> rev tail @ [X]

goal (rev | = | && length | = 2)

Simon Cruanes 28th of March, 2017 2 /17

More examples

Example

Ask the solver to find a regex matching "aabb"

type char = A | B
type string = char list
type regex =

| Epsilon

| Char of char

| Star of regex

| Or of regex * regex

| Concat of regex * regex

let rec match_re : regex —> string —> bool = ...

goal (match_re r [A;A;B;B])

We get r = (elax) -b*, i.e.
r = Concat (Or (Epsilon, (Star (Char A))), Star (Char B))

Simon Cruanes 28th of March, 2017 3/17

More Examples

Example

Solving a sudoku

typecell=C1|C2]..]|C9
type 'a sudoku = ’a list list

let rec is_instance : cell sudoku —> cell option sudoku —> bool =
let rec is_valid : cell sudoku —> bool =

let partial sudoku : cell option sudoku = [[None; Some C1; ...]; ...;]

goal (is_instance e partial _sudoku && is_valid €)

Simon Cruanes 28th of March, 2017 4 /17

More Examples

Example

Solving a sudoku

typecell=C1|C2]..]|C9
type 'a sudoku = ’a list list

let rec is_instance : cell sudoku —> cell option sudoku —> bool =
let rec is_valid : cell sudoku —> bool =

let partial sudoku : cell option sudoku = [[None; Some C1; ...]; ...;]

goal (is_instance e partial _sudoku && is_valid €)

— combinatorial explosion, large search space
— write a SMT solver (satisfiability modulo theory)
— solves in 14 s (not bad for a general-purpose tool)

Simon Cruanes 28th of March, 2017 4 /17

Similar Tools

HBMC : source of inspiration, bit-blasting Haskell — SAT
small check : native code, tries all values up to depth k
lazy small check : same, but uses lazyness to expand
narrowing : similar to LSC, refine meta-variables on demand

CVC4 : handles datatypes and recursive functions by quantifier
instantiation + finite model finding (— inefficient?)

QuickCheck & co : random generation of inputs. Very bad on tight
constraints.

Draw inspiration from HBMC / narrowing+SAT.

Simon Cruanes 28th of March, 2017 5 /17

The Bigger Picture

@ make a better solver for problems based on recursive functions
@ the rest of the talk: implementation

@ use SMT techniques for not drowning in search space
— “Satisfiability Modulo Bounded Checking”

o relation to Nunchaku (model finder for HO logic):

» SMBC is a backend
» other backends not very good on this fragment

— useful and widely applicable problem!
@ paper submitted to CADE

Simon Cruanes 28th of March, 2017 6 /17

http://www.cade-26.info/

Summary

© Implementation

Simon Cruanes 28th of March, 2017 6 /17

Using a SAT-solver Library

Use a SAT solver, here .
— does the backtracking and exploration.

Modularity

MSat is a library using an OCaml functor.
Bring your own theory!

module type THEORY = sig
type formula
type clause = (formula * bool) list

type result = Ok of clause list | Conflict of clause

val assume : formula —> bool —> result
end

module Sat(T:THEORY) : sig
val solve : formula list —> bool
end

Simon Cruanes 28th of March, 2017 7/ 17

https://github.com/Gbury/mSAT

Internals

@ one big Solver module (3,500 loc)

@ more than 20 mutually recursive types at the beginning
(to replace tables by embedding data inside objects)

— yes, ignoring the rules of SW engineering can be fine
... for performance reasons

@ one can write C in any language, even OCaml!

Simon Cruanes 28th of March, 2017 8 /17

A few design Decisions

@ terms (“expressions’, that is, trees) are DAGs with perfect sharing

— save memory, constant-time comparison

— most provers/SMT do it, even in C
@ interpreter with caching of normal form of a value

— caching often dramatically improves performance (when it applies)
@ backtracking: a big stack of “undo” functions

— low memory footprint, low overhead

Simon Cruanes 28th of March, 2017 9 /17

© Profiling for Better Performance

Simon Cruanes 28th of March, 2017 9 /17

How to debug Performance

SMBC needs to be very efficient, because it is kind of bruteforce.

Rules of thumb
@ try to use efficient algorithms everywhere
try to avoid allocating too much
use compiler optimizations (here, ocaml+flambda)

avoid obviously inefficient code, but:

avoid “premature optimization” (as would say D. Knuth)

— hence the need for profiling

Simon Cruanes 28th of March, 2017 10 / 17

CPU profiling: “perf”

perf: standard tool on Linux (initially there for the kernel)

Simon Cruanes 28th of March, 2017 11 / 17

CPU profiling: “perf”

perf: standard tool on Linux (initially there for the kernel)

% perf record ——call—graph=dwarf ./smbc.native examples/ty _infer.smt2
(result SAT
:model ((vale 2
(lam
(lam
(lam

(app (lam (app (var (s (s (s 2)))) (var 2) b))
(app (var (s 2)) (var z) a) b))))))

[perf record: Woken up 40 times to write data]
[perf record: Captured and wrote 9.946 MB perf.data (1234 samples)]

% perf report

Simon Cruanes 28th of March, 2017 11 / 17

Perf (cont'd)

anp o ycle , Event count (approx.): 1069569901
Chi Shared Object bol
smbc.native smbc.native -] caml_main
smbe.nati smbe.native .1 main
smbe.native libe-2.24.s0 .1 __libe_start_main
smbe.native smbe.native .1 _start
smbc.native smbc.native camlSmbe__entry
smbc.native smbc.native caml_program
smbc.nati smbc.native .] caml_start_program
smbc.native smbc.native -] camlsmbec__solve_1377
smbe.nati smbe.native .1 camlSelver__iter_7227
smbe.native smbe.native .1 camlMsat__External__solve_inner_4275
smbe.native smbe.native .1 camlMsat__Internal__search_1827
- 97.26% camlMsat__Internal__search_1827
+ 46.61% camlMsat__Internal__theory_propagate_18@1
+ 21.72% camlMsat__Internal__pick_branch_lit_1815
+ 13.89% camlMsat__Internal__propagate_atom_1763
+ 13.46% camlMsat__Internal__propagate_1802
+ 1.49% camlMsat__Internal__add_boolean_conflict_1716
+ 1.88% _start
©.26% smbc.native smbec.native
©.28% smbc.native smbec.native
©.28% smbc.native smbc.native
©.16% smbc.native smbc.native

[.] camlMsat__Internal__theory_propagate_1301
L
L
L
smbe.native smbe.native C
L
L
L
L

.1 camlSolver__assume_5801
camlList__iter_1252
camlSolver__update_B637
camlSolver__compute_nf_add_5481
camlSolver__compute_nf_noncached_5399
camlSolver__compute_builtin_5482
camlMsat__Internal__pick_branch_lit_1815
.] camlMsat__Ilheap__remove_min_1387

smbe.native smbe.native
smbe.native smbe.native
smbe.native smbe.native
smbc.native smbc.native
— 14.53% camlMsat__ i
+ 10.93% camlMsat
+ 2.12% camlPervas
1.07% caml_modify
+ 4.39% _start

Simon Cruanes 28th of March, 2017 12 /17

Perf and Flamegraphs

With deep recursive calls, perf report isn't very good.

http://www.brendangregg.com/flamegraphs.html

Flame Graph

t very good.

| stackcollapse—perf ——kernel \

— flame graphs (http://www.brendangregg.com/flamegraphs.html)
| sed 's/caml//g" \
| flamegraph > perf.svg

With deep recursive calls, perf report isn

%]
=
o
()
-
{10)
()
£
@
L
O
=
(qv}
G
(o

perf script \

http://www.brendangregg.com/flamegraphs.html

Memory Profiling

OCaml has a GC, so | need to minimize allocations.
— use spacetime, a new memory profiler!
@ https://caml.inria.fr/pub/docs/manual-ocaml/spacetime.html

@ https://blogs.janestreet.com/a-brief-trip-through-spacetime/

Simon Cruanes 28th of March, 2017 14 / 17

https://caml.inria.fr/pub/docs/manual-ocaml/spacetime.html
https://blogs.janestreet.com/a-brief-trip-through-spacetime/

Memory Profiling

OCaml has a GC, so | need to minimize allocations.
— use spacetime, a new memory profiler!
@ https://caml.inria.fr/pub/docs/manual-ocaml/spacetime.html

@ https://blogs.janestreet.com/a-brief-trip-through-spacetime/

Available as an OCaml compiler switch

% opam sw 4.04.0+spacetime
% make clean all

% OCAML_SPACETIME INTERVAL=100 ./smbc.native examples/ty infer.smt2

% prof _spacetime serve spacetime—<PID> —e smbc.native

Simon Cruanes 28th of March, 2017 14 / 17

https://caml.inria.fr/pub/docs/manual-ocaml/spacetime.html
https://blogs.janestreet.com/a-brief-trip-through-spacetime/

Memory Profiling (cont'd)

smbc.native
Mouse over sl cove Cicka porton o
Live words Live blocks All allocated words

Number of words or blocks

Backtrace (oldest frame first):
+ (top of stack

Horizontal: time
Vertical: space
Colors: track memory allocated from a given program position

Memory Profiling (cont'd)

smbc.native

Mouse over the raph to allocated. mouse-over papup text in green. Click a portion of the graph to move up the stack.

Live words Live blocks All allocated words

57648 -

51248 -

a48kB
K]

5 3B
H

£ a0
H
s

2 256KB -|
£
2

10248 -

12848 -

6445 -

okB . : . . : : ; ; |
o 035 045 06s 08s 1 125 145 16s 185 2

Time since program start

Backtrace (oldest frame first):

ml:364,41-67 (camiSet_elements_aux 1474}
ltop of stack]

Can zoom into any region!

Memory Profiling

Found a performance bug this way:

@ MSat uses a lot of dynamic arrays
@ mistake in criterion for re-sizing
— resize at every Vec.push!

@ almost all allocations came from there;
spacetime made it obvious.

Simon Cruanes 28th of March, 2017 16 / 17

Conclusion

@ good algorithms (SAT solver here) trump excellent implementation
but implementation still important!

@ OCaml can have reasonable performance if used properly

@ profile before micro-optimizing

@ tooling for profiling is tremendously useful

perf: can be used with many languages, de-facto standard on
Linux
spacetime: awesome, but limited to OCaml
others: can also profile by manually inserting counters

Simon Cruanes 28th of March, 2017 17 / 17

	Presentation of SMBC (``Satisfiability Modulo Bounded Checking'')
	Implementation
	Profiling for Better Performance

